sábado, 9 de março de 2019




x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D



Teoria do campo Lagrangiana (de Lagrange) é um formalismo na teoria clássica de campos. É o campo análogo teórico da mecânica Lagrangiana. Mecânica lagrangiana é utilizado para partículas discretas, cada uma com um número finito de graus de liberdade. Teoria de campo Lagrangiana aplica-se ao contínuo e campos, que têm um número infinito de graus de liberdade.[1][2]
Este artigo usa  para a densidade Lagrangiana, e L para a Lagrangiana.
O formalismo da mecânica Lagrangiana foi generalizado ainda mais para lidar com teoria de campos. Na teoria de campos, a variável independente é substituída por um evento num espaço-tempo ( x ), ou, mais geralmente ainda, por um ponto s em uma variedade. As variáveis dependentes (q) são substituídas pelo valor de um campo em que um ponto no espaço-tempo φ (xyzt) de modo que as equações de movimento são obtidas por meio de um princípio de ação, escrito como:
onde a ação é um funcional das variáveis dependentes φi(s) com suas derivadas e com s em si mesmo
e onde s = { sα} denota o conjunto de n variáveis independentes do sistemas, indexadas por α = 1, 2, 3,..., n.
Note-se que L é usado no caso de uma variável independente (t) e  é utilizado no caso de múltiplas variáveis independentes (geralmente quatro: x, y, z, t).















x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D




x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D



Em teoria de gauge, um laço de Wilson (nomeado em relação a Kenneth G. Wilson) é um gauge-invariante observável obtido da holonomia da conexão gauge em torno de um dado laço. Na teoria clássica, a coleção de todos os laços de Wilson contém suficiente informação para reconstruir a conexão gauge, até a transformação gauge.[1]
Em teoria quântica de campos, a definição de laços de Wilson observáveis como operadores bona fide sobre o espaço de Fock (atualmente, o teorema de Haag estabelece que o espaço de Fock não existe para TQCs interagentes) é um problema matematicamente delicado e requer regularização, usualmente por equipar cada laço com um emolduramento. A ação dos operadores de laço de Wilson tem a interpretação de criar uma excitação elementar do campo quântico o qual é localizado sobre o laço. Desta maneira, os "tubos de fluxo" de Faraday tornam-se excitações elementares do campo eletromagnético quântico.
Laços de Wilson foram introduzidos nos anos 1970 em uma tentativa de uma formulação de cromodinâmica quântica (QCD) não perturbativa, ou pelo menos como um conjunto de variáveis convenientes para lidar com o regime de interação forte da QCD.[2] O problema do confinamento, para qual os laços de Wilson foram projetados para resolver, permanece insolúvel até hoje.
O fato que teorias quânticas de campos gauge fortemente acopladas têm excitações elementares não perturbativas as quais são os laços que motivaram Alexander Polyakov a formular a primeira teoria das cordas, as quais descrevem a propagação de um laço quântico elementar no espaço-tempo.
Laços de Wilson desempenham um papel importante na formulação da gravidade quântica em loop, mas são substituídas pela rede de spin, uma determinada generalização dos laços de Wilson.
Em física de partículas e teoria das cordas, laços de Wilson são frequentemente chamados linhas de Wilson, especialmente laços de Wilson em torno de laços não contrácteis de uma variedade compacta.

Uma equação[editar | editar código-fonte]

linha de Wilson variável  (ou melhor laço de Wilson variável, uma vez que é sempre lidar com linhas fechadas) é uma grandeza definida por um traço de um trajeto potencial ordenado de um campo gauge  transportado ao longo de uma linha fechada C:
Aqui,  é uma linha curva fechada no espaço,  é o operador trajeto ordenado. Sob uma transformação gauge
,
onde  corresponde ao ponto inicial (e final) do laço (somente os pontos iniciais e finais de uma linha contribuem, onde tranformações gauge entre estas cancelam uma a outra). Para gauges SU(2), por exemplo, um tem  é uma função real arbitrária de , e  são as três matrizes de Pauli; como usual, uma soma repetida ao longo de índices está implícita.
A invariância do traço sob permutações circulares garante que  é invariante sob tranformações gauge. Note-se que a grandeza sobre a qual está se estabelecendo o traço é um elemento do grupo de Lie gauge e o traço é realmente o caráter deste elemento com respeito a um das infinitamente muitas representações irredutíveis, as quais implicam que os operadores  não são necessários ser descritos à "classe de traços" (assim com espectros puramente discretos), mas podem ser genericamente "hermitianos" (ou matematicamente: auto-adujunto) como usual. Precisamente porque nós estamos finalmente vendo o traço, isto não significa que ponto sobre o laço é fechado como o ponto inicial. Todos eles dão o mesmo valor.
Atualmente, se A é visto como uma conexão sobre um "G-fibrado principal", a equação acima realmente deveria ser "lida" como o transporte paralelo da identidade em torno do laço o qual daria um elemento do grupo de Lie G.
Note-se que um trajeto ordenado exponencial é uma conveniente notação simplificada em física que esconde um certo número de operações matemáticas. Um matemático refere-se ao trajeto ordenado exponencial da conexão como "a holonomia da conexão" e o caracteriza pela equação diferencial de transporte paralelo que esta satisfaz.
Em T=0, a variável do laço de Wilson caracteriza o confinamento ou deconfinamento de uma teoria quântica de campo gauge-invariante, nomeada de acordo a saber-se se a variável aumenta com a área, ou alternativamente com a circunferência do laço ("lei de área", ou alternativamente "lei circunferencial" também conhecida como "lei do perímetro").
Em QCD de temperatura finita, o valor térmico esperado da linha de Wilson distingue entre a fase confinada "hadrônica", e o estado deconfinado do campo, e.g., o muito debatido plasma de quarks-glúons.











NO SISTEMA CATEGORIAL DE GRACELI TODO TIPO DE MOVIMENTO TEM AÇÃO TRANSFORMADORA  [como os outros elementos, como temperatura, radioatividade, luz, e outros],SOBRE ESTRUTURAS E ENERGIAS, TEMPO E ESPAÇO, INÉRCIA E GRAVIDADE, LUZ .


Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.


Estados térmico.
Estado quântico.
De dilatação.
De entropia.
De potencia de entropia e relação com dilatação.
De magnetismo [correntes, momentum e condutividades]..
De eletricidade [correntes, momentum e condutividades].
De condutividade.
De mometum e fluxos variados.
De potencial inercial da matéria e energia.
De transformação.
De comportamento de cargas e interações com elétrons.
De emaranhamentos e transemaranhamentos.
De paridades e transparidades.
De radiação.
Radioatividade.
De radioisótopos.
De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.

De resistir à temperaturas.
E transformar em dilatação, interações entre partículas, energias e campos.
Estado dos padrões de variações e efeitos variacionais.
Estado de incerteza dos fenômenos e entre as suas interações.


E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.


E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.



Sobre padrões de entropia.

Mesmo havendo uma desordem, esta desordem segue alguns parâmetros futuros e que dependem de condições dos estados de Graceli, ou seja, a desordem segue alguns padrões e ordens conforme avança e passa por fases e agentes fenomênicos, estruturais e geométricos.


Porem, a reversibilidade se torna impossível, aumenta a instabilidade e as incertezas de posição, intensidade, variações, efeitos e outros fenômenos conforme as próprias intensidades de dilatações, e agentes e estados envolvidos.


Levando em consideração que mesmo havendo ordem não é possível a reversibilidade do estado e condições em que se encontravam a energia, matéria, momentum, inércias, dimensões, e outros agentes.


A temperatura pode voltar ao seu lugar e ao seu ponto inicial, mas não as estruturas das partículas, as intensidades infinitésimas de padrões de energias, e nem o grau de oscilações que a energias, as interações, as transformações que passam estas partículas e suas energias, estruturas e interações, e as interações e intensidades de grau de variação de cada agente.


Porem, a desordem é temporal, ou seja, com o passar do tempo outras ordens e padrões se afirmarão.


Sendo que também a entropia varia conforme intensidade de instabilidade por tempo. E tempo por intensidade de instabilidade.


Assim, segue efeitos variacionais e de incertezas por instabilidade de energia adicionada, e de tempo.


Ou seja, uma grande instabilidade e desordem em pouco tempo vai levar a uma grande e instável por mais tempo uma entropia.


Do que um grande tempo com pequena intensidade de instabilidade e energia adicionada num sistema ou numa variação térmica.


Ou mesmo numa variação eletromagnética, ou mesmo na condutividade.


Princípio tempo instabilidade de Graceli.

Assim, a desordem acaba por encontrar uma ordem se não acontecer nenhuma instabilidade novamente. Pois, as partículas e energias tendem a se reorganizar novamente conforme o passar do tempo,  e esta reorganização segue um efeito progressivo em relação à desordem e tempo. Como os vistos acima.


Ou seja, aquela organização anterior não vai mais acontecer, pois, segue o princípio da irreversibilidade, mas outras organizações se formarão conforme avança o tempo de estabilidade.


as dimensões categorias podem ser divididas em cinco formas diversificadas.

tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.



paradox of the system of ten dimensions and categories of Graceli.



a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.



that is, categories ground the variables of phenomena and their interactions and transformations.



and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.



but structures are related to transitions of physical states, quantum, energies, phenomena, and others.



as well as transitions of energies, phenomena, categories and dimensions.

paradoxo do sistema de dez dimensões e categorias de Graceli.

um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.

ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.

e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.

mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.

como também transições de energias, fenômenos, categorias e dimensões.







 = entropia reversível

postulado categorial e decadimensional Graceli.

TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.


todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
matriz categorial Graceli.

T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


1] Cosmic space.
2] Cosmic and quantum time.
3] Structures.
4] Energy.
5] Phenomena.
6] Potential.
7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
9] thermal specificity, other energies, and structure phenomena, and phase transitions.
10] action time specificity in physical and quantum processes.




Sistema decadimensional Graceli.

1]Espaço cósmico.
2]Tempo cósmico  e quântico.
3]Estruturas.
4]Energias.
5]Fenômenos.
6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quãntico,  e estados de fenômenos e estados de transições, transformações e decaimentos.
7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
10] especificidade de tempo de ações em processos físicos e quântico.


T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


Matriz categorial de Graceli.


T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         Dl


Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.

[estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
trans-intermecânica de supercondutividade no sistema categorial de Graceli.

EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

h e = quantum index and speed of light.

[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


EPG = GRACELI POTENTIAL STATUS.

[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]

, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].














x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D




sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D



Em teoria de gauge, um laço de Wilson (nomeado em relação a Kenneth G. Wilson) é um gauge-invariante observável obtido da holonomia da conexão gauge em torno de um dado laço. Na teoria clássica, a coleção de todos os laços de Wilson contém suficiente informação para reconstruir a conexão gauge, até a transformação gauge.[1]
Em teoria quântica de campos, a definição de laços de Wilson observáveis como operadores bona fide sobre o espaço de Fock (atualmente, o teorema de Haag estabelece que o espaço de Fock não existe para TQCs interagentes) é um problema matematicamente delicado e requer regularização, usualmente por equipar cada laço com um emolduramento. A ação dos operadores de laço de Wilson tem a interpretação de criar uma excitação elementar do campo quântico o qual é localizado sobre o laço. Desta maneira, os "tubos de fluxo" de Faraday tornam-se excitações elementares do campo eletromagnético quântico.
Laços de Wilson foram introduzidos nos anos 1970 em uma tentativa de uma formulação de cromodinâmica quântica (QCD) não perturbativa, ou pelo menos como um conjunto de variáveis convenientes para lidar com o regime de interação forte da QCD.[2] O problema do confinamento, para qual os laços de Wilson foram projetados para resolver, permanece insolúvel até hoje.
O fato que teorias quânticas de campos gauge fortemente acopladas têm excitações elementares não perturbativas as quais são os laços que motivaram Alexander Polyakov a formular a primeira teoria das cordas, as quais descrevem a propagação de um laço quântico elementar no espaço-tempo.
Laços de Wilson desempenham um papel importante na formulação da gravidade quântica em loop, mas são substituídas pela rede de spin, uma determinada generalização dos laços de Wilson.
Em física de partículas e teoria das cordas, laços de Wilson são frequentemente chamados linhas de Wilson, especialmente laços de Wilson em torno de laços não contrácteis de uma variedade compacta.

Uma equação[editar | editar código-fonte]

linha de Wilson variável  (ou melhor laço de Wilson variável, uma vez que é sempre lidar com linhas fechadas) é uma grandeza definida por um traço de um trajeto potencial ordenado de um campo gauge  transportado ao longo de uma linha fechada C:
Aqui,  é uma linha curva fechada no espaço,  é o operador trajeto ordenado. Sob uma transformação gauge
,
onde  corresponde ao ponto inicial (e final) do laço (somente os pontos iniciais e finais de uma linha contribuem, onde tranformações gauge entre estas cancelam uma a outra). Para gauges SU(2), por exemplo, um tem  é uma função real arbitrária de , e  são as três matrizes de Pauli; como usual, uma soma repetida ao longo de índices está implícita.
A invariância do traço sob permutações circulares garante que  é invariante sob tranformações gauge. Note-se que a grandeza sobre a qual está se estabelecendo o traço é um elemento do grupo de Lie gauge e o traço é realmente o caráter deste elemento com respeito a um das infinitamente muitas representações irredutíveis, as quais implicam que os operadores  não são necessários ser descritos à "classe de traços" (assim com espectros puramente discretos), mas podem ser genericamente "hermitianos" (ou matematicamente: auto-adujunto) como usual. Precisamente porque nós estamos finalmente vendo o traço, isto não significa que ponto sobre o laço é fechado como o ponto inicial. Todos eles dão o mesmo valor.
Atualmente, se A é visto como uma conexão sobre um "G-fibrado principal", a equação acima realmente deveria ser "lida" como o transporte paralelo da identidade em torno do laço o qual daria um elemento do grupo de Lie G.
Note-se que um trajeto ordenado exponencial é uma conveniente notação simplificada em física que esconde um certo número de operações matemáticas. Um matemático refere-se ao trajeto ordenado exponencial da conexão como "a holonomia da conexão" e o caracteriza pela equação diferencial de transporte paralelo que esta satisfaz.
Em T=0, a variável do laço de Wilson caracteriza o confinamento ou deconfinamento de uma teoria quântica de campo gauge-invariante, nomeada de acordo a saber-se se a variável aumenta com a área, ou alternativamente com a circunferência do laço ("lei de área", ou alternativamente "lei circunferencial" também conhecida como "lei do perímetro").
Em QCD de temperatura finita, o valor térmico esperado da linha de Wilson distingue entre a fase confinada "hadrônica", e o estado deconfinado do campo, e.g., o muito debatido plasma de quarks-glúons.











NO SISTEMA CATEGORIAL DE GRACELI TODO TIPO DE MOVIMENTO TEM AÇÃO TRANSFORMADORA  [como os outros elementos, como temperatura, radioatividade, luz, e outros],SOBRE ESTRUTURAS E ENERGIAS, TEMPO E ESPAÇO, INÉRCIA E GRAVIDADE, LUZ .


Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.


Estados térmico.
Estado quântico.
De dilatação.
De entropia.
De potencia de entropia e relação com dilatação.
De magnetismo [correntes, momentum e condutividades]..
De eletricidade [correntes, momentum e condutividades].
De condutividade.
De mometum e fluxos variados.
De potencial inercial da matéria e energia.
De transformação.
De comportamento de cargas e interações com elétrons.
De emaranhamentos e transemaranhamentos.
De paridades e transparidades.
De radiação.
Radioatividade.
De radioisótopos.
De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.

De resistir à temperaturas.
E transformar em dilatação, interações entre partículas, energias e campos.
Estado dos padrões de variações e efeitos variacionais.
Estado de incerteza dos fenômenos e entre as suas interações.


E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.


E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.



Sobre padrões de entropia.

Mesmo havendo uma desordem, esta desordem segue alguns parâmetros futuros e que dependem de condições dos estados de Graceli, ou seja, a desordem segue alguns padrões e ordens conforme avança e passa por fases e agentes fenomênicos, estruturais e geométricos.


Porem, a reversibilidade se torna impossível, aumenta a instabilidade e as incertezas de posição, intensidade, variações, efeitos e outros fenômenos conforme as próprias intensidades de dilatações, e agentes e estados envolvidos.


Levando em consideração que mesmo havendo ordem não é possível a reversibilidade do estado e condições em que se encontravam a energia, matéria, momentum, inércias, dimensões, e outros agentes.


A temperatura pode voltar ao seu lugar e ao seu ponto inicial, mas não as estruturas das partículas, as intensidades infinitésimas de padrões de energias, e nem o grau de oscilações que a energias, as interações, as transformações que passam estas partículas e suas energias, estruturas e interações, e as interações e intensidades de grau de variação de cada agente.


Porem, a desordem é temporal, ou seja, com o passar do tempo outras ordens e padrões se afirmarão.


Sendo que também a entropia varia conforme intensidade de instabilidade por tempo. E tempo por intensidade de instabilidade.


Assim, segue efeitos variacionais e de incertezas por instabilidade de energia adicionada, e de tempo.


Ou seja, uma grande instabilidade e desordem em pouco tempo vai levar a uma grande e instável por mais tempo uma entropia.


Do que um grande tempo com pequena intensidade de instabilidade e energia adicionada num sistema ou numa variação térmica.


Ou mesmo numa variação eletromagnética, ou mesmo na condutividade.


Princípio tempo instabilidade de Graceli.

Assim, a desordem acaba por encontrar uma ordem se não acontecer nenhuma instabilidade novamente. Pois, as partículas e energias tendem a se reorganizar novamente conforme o passar do tempo,  e esta reorganização segue um efeito progressivo em relação à desordem e tempo. Como os vistos acima.


Ou seja, aquela organização anterior não vai mais acontecer, pois, segue o princípio da irreversibilidade, mas outras organizações se formarão conforme avança o tempo de estabilidade.


as dimensões categorias podem ser divididas em cinco formas diversificadas.

tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.



paradox of the system of ten dimensions and categories of Graceli.



a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.



that is, categories ground the variables of phenomena and their interactions and transformations.



and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.



but structures are related to transitions of physical states, quantum, energies, phenomena, and others.



as well as transitions of energies, phenomena, categories and dimensions.

paradoxo do sistema de dez dimensões e categorias de Graceli.

um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.

ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.

e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.

mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.

como também transições de energias, fenômenos, categorias e dimensões.







 = entropia reversível

postulado categorial e decadimensional Graceli.

TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.


todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
matriz categorial Graceli.

T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


1] Cosmic space.
2] Cosmic and quantum time.
3] Structures.
4] Energy.
5] Phenomena.
6] Potential.
7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
9] thermal specificity, other energies, and structure phenomena, and phase transitions.
10] action time specificity in physical and quantum processes.




Sistema decadimensional Graceli.

1]Espaço cósmico.
2]Tempo cósmico  e quântico.
3]Estruturas.
4]Energias.
5]Fenômenos.
6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quãntico,  e estados de fenômenos e estados de transições, transformações e decaimentos.
7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
10] especificidade de tempo de ações em processos físicos e quântico.


T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


Matriz categorial de Graceli.


T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         Dl


Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.

[estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
trans-intermecânica de supercondutividade no sistema categorial de Graceli.

EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

h e = quantum index and speed of light.

[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


EPG = GRACELI POTENTIAL STATUS.

[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]

, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].